Hibaanalízis mesterséges intelligenciával
Evidenciának tűnik, hogy kifizetődőbb elvégezni a megelőző karbantartásokat, mint megvárni, amíg beüt a baj és le kell állítani az egész gyártósort. De honnan tudjuk, hogy pontosan hol és milyen karbantartásra van szükség? A választ a mesterséges intelligencia adhatja meg. A karbantartási és szerviztevékenységek valódi igényeknek megfelelő ütemezését célzó Siemens Predictive Service Analyzer megoldással akár 30 százalékkal is növelhető egy gyártóüzem rendelkezésre állása.
Előre kell gondolkodni
A tervezett karbantartás egyre kevésbé képes megfelelően kiszolgálni a termelőüzemeket, ahol a váratlan leállások és a nem tervezett karbantartási események komoly bevételkieséshez vezetnek. A modern gyártásban az azonnali beavatkozásra való képesség, vagy a meghibásodás előrejelzése kulcsfontosságú tényezők a tempó megtartásához. A Predictive Service Analyzer olyan megoldást kínál, amivel a felhasználók már a hajtásrendszerek meghibásodása előtt, a kialakulás korai szakaszában értesülnek a várható hibaeseményekről. Ezáltal megfelelően fel tudnak készülni, és a nem tervezett leállások helyett a karbantartást a gép igényeire szabva iktathatják be a termelésbe.
A mesterséges intelligencia alapú Predictive Service Analyzer integrált felhasználói felületet kínál, amelynek használatához nem szükséges MI-ismeretekkel rendelkezni. A kijelzőn egyértelműen láthatók a rendellenességekre utaló információk.
Olvas a paraméterek között
A Siemens Predictive Service Analyzer egy mesterséges intelligencia alapú prediktív karbantartási rendszer, amely felismeri a meghibásodásokra utaló korai figyelmeztető jeleket. Ilyenek lehetnek a motorok és hajtások mechanikai sérülései, a csapágyak károsodása, a kiegyensúlyozatlanság vagy a frekvenciaváltók működésének zavarai.
A megoldás előnyeit a folyamatosan mozgó gépek felügyeletében használhatják ki a legjobban. Szivattyúk, ventilátorok, kompresszorok és motorok esetén a megfelelő paraméteradatok alapján a mesterséges intelligencia közel valós időben végzi el az elemzéseket és hívja fel a figyelmet a lehetséges meghibásodásra. Mivel maga a rendszer egyszerre használja ki a felhő és a peremhálózat előnyeit, az általa generált adatforgalom mennyisége optimalizálható – ezzel az alkalmazás felépítésének és működtetésének költségei egyaránt leszoríthatók.
Feladatra szabott megoldás
A mesterséges intelligencia rugalmasságának köszönhetően számos alkalmazásban kihasználhatók a Predictive Service Analyzer előnyei. A karbantartási szükségletek átláthatóvá válnak, így a pótalkatrészek rendelkezésre állása is kiszámíthatóvá tehető. A kritikus alkatrészeket és gépegységeket kockázati elemzésnek vethetjük alá, ami további fejlesztések előtt nyit lehetőséget.
De nemcsak abból profitálhatnak a vállalatok, hogy jobban megismerik a termelőrendszer karbantartási igényeit: a moduláris szolgáltatáscsomag bővítési lehetőségeket is tartogat, amivel a gyűjtött paraméterek elemzése, kiértékelése és akár a beavatkozások is az adott termelési feladatra szabhatók.
A megoldást a közelgő hannoveri vásáron, az ipar nemzetközi seregszemléjén mutatja be a Siemens.
Kapcsolódó cikkek
- Mindent kézben tartunk
- Ruhaápolási megoldások mesterséges intelligenciával
- Újabb megoldás segíti az áramhálózat digitalizációját
- Magyarországon nyílt a világ első pénztármentes kávézója
- Átadták Magyarország első mesterséges intelligencia ipari tanszékét
- A Siemens Mobility akkumulátoros vonatokat szállít Dániába
- A valóságmanipulációs eljárás laikus szemmel szinte felismerhetetlen
- A Bosch eurómilliárdokat fordít a klímasemleges technológiákra
- Az ESET új megközelítéssel és kiemelkedő véleményvezérekkel mutatja be, hogyan látja a technológia fejlődésének jövőjét
- Növénytermesztés a víz alatt
Megoldás ROVAT TOVÁBBI HÍREI
Magyar siker a látássegítő eszközöket fejlesztők nemzetközi versenyén
A Pázmány Péter Katolikus Egyetem Információs Technológiai és Bionikai Karának EyeRider csapata elnyerte az első helyet a 2024-es Cybathlon Vision Assistance kategóriájában.
Robotkutyákat tesztel a Boxy fulfillment logisztikai központ
A Boxy fulfillment szolgáltató hosszútávú technológiai fejlesztési projektjének keretében pilot programot indított a négylábú robotok e-kereskedelemben történő alkalmazási lehetőségeinek felmérése érdekében. A kísérlet célja, hogy feltérképezze a robotikában rejlő rugalmasság és autonómia olyan aspektusait, amelyek hozzájárulhatnak az e-kereskedelmi logisztika hatékonyságának növeléséhez, valamint a vásárlói és munkavállalói élmény javításához.
Együttműködik az ABB és a Zumtobel Csoport
A globális technológiai piacvezető ABB és az ausztriai székhelyű, a professzionális világítási megoldások terén világelső Zumtobel Csoport bejelentette, hogy stratégiai partnerségre lép. Céljuk az intelligens épületmegoldások és az egyenáramú (DC) ipari termékalkalmazások fejlesztése. Az együttműködő felek azt tervezik, hogy a fenntartható épületek számára integrált, intelligens megoldásokat kínálva jelentős hozzáadott értéket teremtsenek a kereskedelmi, ipari és intézményi szektorban tevékenykedő ügyfelek számára.
A Telekom ügyfelei számára már minden budapesti metróvonalon elérhető az 5g szolgáltatás
A Telekom november 11-étől az összes budapesti metróvonalon elérhetővé tette az 5G hálózatot ügyfelei számára, amelyet 5G-képes készülékkel és mobilinternet-szolgáltatással tudnak igénybe venni.
Fellendülő elektromobilitás: A Drees & Sommer támogatást nyújt az autógyártóknak
A napi mintegy 1000 járművet gyártó és közel 7000 alkalmazottat foglalkoztató történelmi müncheni fő telephely a BMW globális termelési hálózatának nélkülözhetetlen része. A kizárólag elektromos meghajtást használó új járműarchitektúra, a New Class gyártása 2026-tól itt fog megkezdődni. Az autógyártó 650 millió eurót fektet be az új jármű-összeszerelő üzembe a logisztikai területeket és a karosszériagyártást is beleértve.