A Fujitsu mérsékli a vizuális ellenőrzést támogató MI-megoldások költségeit

forrás: Prím Online, 2019. július 22. 17:19

A Fujitsu a Laboratories of Europe a mai napon két olyan új technológiát mutatott be, amely jelentősen mérsékli a vizuális ellenőrzést támogató MI-megoldások létrehozásának költségeit. Az új megoldás olyan új típusú, normál (sérülésmentes) adatokkal betanítható hibaészlelő technológiát használ, amely jelentősen mérsékli az adatsorok összeállításának költségét, és lehetővé teszi a korábban nem észlelt minták azonosítását. 

A Fujitsu ezt MI-vel gyorsított grafikus felhasználói felülettel ötvözi, amely az automatikusan azonosított kritikus területek alapján gyors klasztercímkézést végez, és ezzel jó minőségű adatsorokat hoz létre. A két technológia együttes alkalmazásával nagy pontosságú, automatikus hibaélszelés végezhető (a kritikus területek 80-90%-ának automatikus felderítésével), és 50-100x-os gyorsulás érhető el az adatsorokon alapuló betanítás és címkézés folyamatában. 

 

A vizuális ellenőrzés a vizuális adatok elemzésének elsődleges módszere, amellyel – általában képek alapján – azonosítják a kritikus területeket. A művelet során rendkívül nagy adattömeget elemeznek aprólékosan kis számú kritikus terület behatárolásához. A gyártóiparban ezt a megközelítést alkalmazzák a hibás termékek vagy a terméken belüli hibás részek azonosítására. Az infrastruktúra-karbantartás során ennek segítségével találják meg a repedéseket a hidakon, a kátyúkat az utakon, az egészségügyben pedig a beteg szövetrészeket. A vizuális ellenőrzés automatizálásával az elemzési idő és ezzel együtt a költség is jelentősen mérsékelhető. Ráadásul az automatikus elemzés kiiktatja az eltérő emberi értelmezések miatti variációkat, és ezzel következetesebb eredményeket biztosít. 

 

A jó minőségű adatsorok létrehozásában az jelenti a kihívást, hogy nagyon kis számú kritikus területtel kell foglalkozni, és a pontos MI-modell betanításához szükséges nagy mennyiségű kép vizuális ellenőrzése sokba kerül. Egy 100 hibát tartalmazó adatsor összeállításához például 100 ezer képet kell ellenőrizni (0,1%-os átlagos hibaarány). 1000 kritikus terület esetén 1 millió kép vizuális ellenőrzése szükséges egy észszerűnek tekinthető adatsor elkészítéséhez. A Fujitsu Laboratories of Europe kombinált MI-megoldása orvosolja ez a problémát, és lehetővé teszi a jó minőségű címkézett adatsorok gyors és költséghatékony generálását. Az új technológiákat külön-külön és együtt is lehet használni. Az anomáliaészlelő technológia közvetlenül alkalmazható a szabályosnak tekintettől való bármilyen típusú eltérés közvetlen azonosításához. A LabelGear pedig elvégzi a szükséges címkék hozzárendelését, ha a megoldás megköveteli az eltérés (vagy hiba) jellegének meghatározását. 

 

Fujitsu Laboratories of Europe vezérigazgatója, Dr. Adel Rouz így magyarázza a technológiai áttörés jelentőségét: „A Fujitsu legújabb MI-technológiája fejlett adatanalitikai és gépi tanulási szakértelmünkre támaszkodva segíti a komplex roncsolásmentes vizsgálati alkalmazásokat. Az olcsón és egyszerűen generálható, nagy volumenű hibamentes mintával dolgozó új hibaészlelő technológia gyorsan felméri, mit kell automatikusan keresni. Ezzel egyszerűsíti és gyorsítja a gépi tanulási megoldások kidolgozását, és korábban ismeretlen anomáliák észlelését teszi lehetővé. Az új MI-vel támogatott LabelGear grafikus felhasználói felülettel együtt olyan ütőképes vizuális ellenőrző eszközt fejlesztettünk ki, amely sokféle feladatra alkalmazható, csökkenti a költségeket, javítja a pontosságot és felgyorsítja a teljes folyamatot.” 

 

Lehetséges alkalmazási terület a gyártóipar, ahol kamerákat helyeznek el a gyártósor főbb pontjain, folyamatosan monitorozva a termékminőséget és azonosítva a potenciális hibákat. Az acélgyártásban például, ahol 2 km-nyi acéltekercset állítanak elő óránként, körülbelül 70 ezer kép segítségével rögzítik egy-egy acéltekercs felületét, és mintegy 1 millió képet készítenek naponta. A Fujitsu megoldásával 200 felismerést igénylő hibatípus esetén a hibák 80-90%-a automatikusan azonosítható, és megfelelő címkével látható el. A megoldás szintén jól használható az infrastruktúrafigyelés és az egészségügy területén, ahol képes diagnosztikát végezni, és kiszűrni a normálistól eltérő értékeket, pl. a röntgenképeken mutatkozó mellkasi rendellenességeket. Egyedül az USA-ban mintegy 150 millió ilyen egészségügyi szűrővizsgálatot végeznek évente. A keletkező óriási képtömeg manuális címkézése megfizethetetlenül drága és időigényes folyamat lenne – ám a Fujitsu automatikus vizuális ellenőrzési technológiáival mindez könnyen kezelhető.

 

A technológiákról

A Fujitsu Laboratories of Europe megoldása hibamentes adatok alapján pontos modellt állít fel arról, mi tekinthető normálisnak (pl. jó terméknek, szabályos felületnek, egészséges szövetnek). A megismert hibamentes modell és a tényleges kép összehasonlítása alapján a rendszer észleli a váratlan mintákat (kritikus területeket) – függetlenül attól, hogy korábban találkozott-e már velük. Kizárólag címkézetlen adatok használata esetén a rendszer a kritikus területek 80-90%-át képes automatikusan felderíteni. 


1. ábra: 3 adatsoron elért pontosság gyártási területről 

 

Az MI-vel gyorsított LabelGear grafikus felhasználói felület lehetővé teszi, hogy a rendszer gyorsan címkéket rendeljen az automatikusan felderített kritikus területekhez a jó minőségű betanítási adatsor létrehozása érdekében. A megoldás a kritikus területeket vizuális megjelenésük alapján klaszterekbe sorolja, hogy a felhasználó egyszerre egy egész klasztert címkézhessen fel különálló képek helyett. Egy kisebb adatsor (pl. 10%) címkézését követően a grafikus felhasználói felület elkészíti az adatok belső leírását, amelynek segítségével előre tudja jelezni a még címkézetlen adatsort. Ennek alapján a grafikus felhasználói felület dinamikusan újrarendezi a célcímkéket, és következetesen a legvalószínűbb egyezéseket helyezi el felül, csökkentve ezzel a megfelelő címke megkereséséhez szükséges időt. A kritikus területek automatikus azonosításának, a teljes klaszter címkézésének és a címkék dinamikus újrarendezésének köszönhetően 50-100x gyorsabban állítható össze jó minőségű adatsor, mint hagyományos technológiákkal. 

 

Ha nagy mennyiségű címkézetlen képadat áll rendelkezésre, akkor a LabelGear közvetlenül is használható a szükséges címkék gyors hozzárendeléséhez az észlelési feladatok besorolásakor. Ha a megoldással szemben a betanítási adatsorban nem szereplő anomáliák megjelölése is elvárás, a Fujitsu anomáliaészlelő technológiája tudja biztosítani ezt az extra funkciót.

 

2. ábra: A jó minőségű címkézett adatsorok generálásához használt két új technológia. Az első technológia hibamentes adatok felhasználásával automatikusan kijelöli a kritikus területeket. Ezután a LabelGear grafikus felhasználói felületen keresztül címkék rendelhetők hozzá ezekhez a területekhez.

Megoldás ROVAT TOVÁBBI HÍREI

A digitális bankolás jövője: személyre szabott ügyfélélmény és új generációs technológiák

A Deloitte legfrissebb, Digital Banking Maturity 2024 kutatásának eredményeiből kiderül, hogy a COVID-19 járvány idején elindult digitalizációs folyamatok nemhogy nem lassultak, hanem új lendületet kaptak a bankszektorban az elmúlt évek során, alkalmazkodva az ügyfelek folyamatosan bővülő igényeihez. A fejlesztések fókuszában a funkciók mennyisége helyett, egyre inkább a személyre szabottság, az ügyfélélmény fokozása és a költséghatékonyság kapott hangsúlyt. Emellett a korábban elhanyagolt területek, például a digitális jelzálog is előtérbe kerültek.

2024. november 21. 17:59

OMV: 2025 végéig országszerte elérhető lesz az ultragyors töltőhálózat

Országszerte 15 helyszínen már igénybe vehetőek az OMV új gyorstöltői. A társaság még idén megduplázza ultragyors töltéssel üzemelő töltőállomásai számát, 2025 végéig pedig közel 50 helyszínen összesen 80 villámtöltő pont működik majd az országban. A töltők legalább 100 kW teljesítmény leadására képesek, ami később több helyszínen akár a 200 kW-ot is elérheti, a hálózati kapacitás függvényében.  Az OMV saját applikációt is fejlesztett a töltőkhöz, amiben most különleges akciókkal várja az autósokat.

2024. november 21. 16:35

Nemzetközi szintre lép a karbonlábnyom-csökkentő magyar startup

Balogh Petya és az általa fémjelzett STRT Holding Nyrt., valamint két másik befektető látott fantáziát a digitális marketing tevékenységek, így a weboldalak és e-mail kampányok karbonlábnyomának csökkentésére specializálódott Carbon.Crane-ben. A világszinten naponta küldött 350 milliárd e-mail* és a 200 millió aktívan üzemelő weboldal** – a háttérben dolgozó szerverparkok miatt – egyre nagyobb, ráadásul egyre növekvő részét teszi ki a globális karbonkibocsátásnak, erre dolgozott ki egyedi megoldásokat a 100%-ban magyar tulajdonú és hazai alapítású startup. Az egyedi és innovatív szolgáltatásokat nemzetközi szinten is értékeli a szakma, amit legutóbb a MediaSpace Global Changemakers' Awards 2024 díjával ismert el.

2024. november 21. 14:56

Újabb kutatás cáfolja az AI-félelmeket

A Unisys friss kutatása szerint mind az alkalmazottak, mind a munkáltatók pozitívnak ítélik meg a mesterséges intelligencia (AI) munkahelyi hatását. A Magyarországon több mint 700 szakembert foglalkoztató vállalat négy országban elvégzett felmérése azt mutatja, hogy az AI alkalmazása növelheti a dolgozói elégedettséget, és segítheti a gyorsabb karrierépítést, míg a vállalatvezetők szerint versenyképességüket veszélyezteti, ha nem építik be a technológiát a működésükbe.

2024. november 21. 11:39

A Mikulás sem egyedül dolgozik, a cégednek sem kell

Egyre több vásárló igyekszik elkerülni a december végi vásárlási dömpinget, így az online megrendelések száma a karácsonyt megelőző hónapokban akár az éves átlag többszörösére is ugorhat. Az áruházak számára ilyenkor kiemelten fontos a forgalom maximalizálása, de a megugró ügyfélszolgálati igények kielégítése és a zökkenőmentes kiszolgálás biztosítása komoly kihívásokat jelent.

2024. november 21. 10:12

Kövess minket a Facebookon!

Cikkgyűjtő

További fontos híreink

Huszadik alkalommal adták át a Hégető Honorka-díjakat

2024. november 21. 16:58

Hosszabbít ’Az Év Honlapja’ pályázat!

2024. november 19. 09:54

Törj be a digitális élvonalba: Nevezz ’Az Év Honlapja’ pályázatra!

2024. november 14. 16:36

A virtuális valóság az egészségügyet is forradalmasíthatja

2024. november 12. 18:01